Effect of interstitial fluid on a granular flowing layer

نویسندگان

  • NITIN JAIN
  • J. M. OTTINO
  • R. M. LUEPTOW
  • R. M. Lueptow
چکیده

A dominant aspect of granular flows is flow in thin surface layers. While an understanding of the dynamics of dry granular surface flow has begun to emerge, the case of flow when air is completely replaced by a liquid is largely unexplored. Experiments were performed using particle tracking velocimetry (PTV) in a quasitwo-dimensional rotating tumbler to measure the velocity field within the flowing layer of monodisperse spherical particles fully submerged in liquids, a granular slurry, for a range of Froude numbers, bead sizes, fluid densities and fluid viscosities. The thickness of the flowing layer and the angle of repose with a liquid interstitial fluid are generally larger than for the dry system under similar conditions, although the shear rate is generally smaller. The experimental measurements of shear rate match the theoretical predictions (dependent on the particle size, dynamic angle of repose, and static angle of repose) independent of the interstitial fluid. Furthermore, the velocity profiles for larger beads collapse independent of the interstitial fluid, while for smaller beads these profiles collapse on two distinct curves when using a scaling based on mass balance. However, a normalization based on the velocity of beads at the surface causes a collapse to a nearly linear velocity profile except where the velocity approaches zero logarithmically near the fixed bed, regardless of interstitial fluid. Likewise, the scaled number density profiles collapse, regardless of the interstitial fluid. The similarity in the flows of dry granular materials and granular materials submerged in liquids indicates that the physics of the flow is not strongly altered by the interstitial fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers.

The scaling properties of the continuous flowing layer in a quasi-2D circular tumbler half filled with a granular material are studied experimentally in the presence of three different interstitial fluids (air, water, and glycerine). In the dry case, the dimensionless flowing layer thickness δ(0)/d scales with the dimensionless flow rate Q(dry)(*) = Q/(dsqrt[gd]), where Q is the flow rate, d is...

متن کامل

Surface Effect on Vibration of Y-SWCNTs Embedded on Pasternak Foundation Conveying Viscose Fluid

Surface and small scale effects on free transverse vibration of a single-walled carbon nanotube (SWCNT) fitted with Y-junction at downstream end conveying viscose fluid is investigated in this article based on Euler-Bernoulli beam (EBB) model. Nonlocal elasticity theory is employed to consider small scale effects due to its simplicity and efficiency. The energy method and Hamilton’s principle a...

متن کامل

Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations.

The continuum theory of partially fluidized shear granular flows is tested and calibrated using two-dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of the order parameter that describes the transition between static and flowing regimes of granular material. We define the order parameter as a fraction of static contacts among all contact...

متن کامل

Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media.

Granular material on an inclined plane will flow like a fluid if the angle theta the plane makes with the horizontal is large enough. We study chute flow down a plane using a hydrodynamic model previously used to describe granular Couette flow. Our model predicts a jammed-to-flowing transition as theta is increased even though it does not include solid friction, which might seem necessary to st...

متن کامل

On the apparent particle dispersion in granular media

The apparent particle dispersion in a granular medium due to the combined effects of random granular arrangements and interstitial fluid flow was studied. The particle motion was a two-dimensional random walk on the transverse plane. The corresponding dispersion coefficient was found by sampling all possible trajectories with the aid of two granular media models. The theoretical results were ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004